一、关系式法
关系式法是根据化学方程式计算的巧用,其解题的核心思想是化学反应中质量守恒,各反应物与生成物之间存在着基本的比例(数量)关系。
二、方程或方程组法
根据质量守恒和比例关系,依据题设条件设立未知数,列方程或方程组求解,是化学计算中常用的方法,其解题技能也是重要的计算技能。
三、守恒法
化学方程式既然能够表示出反应物与生成物之间物质的量、质量、气体体积之间的数量关系,那么就必然能反映出化学反应前后原子个数、电荷数、得失电子数、总质量等都是守恒的。巧用守恒规律,常能简化解题步骤、准确快速将题解出,收到事半功倍的效果。
四、差量法
找出化学反应前后某种差量和造成这种差量的实质及其关系,列出比例式求解的方法,即为差量法。其差量可以是质量差、气体体积差、压强差等。
差量法的实质是根据化学方程式计算的巧用。它大的优点是:只要找出差量,就可求出各反应物消耗的量或各生成物生成的量。
五、平均值法
平均值法是巧解方法,它也是一种重要的解题思维和解题
六、极值法
巧用数学极限知识进行化学计算的方法,即为极值法。
七、十字交叉法
若用A、B分别表示二元混合物两种组分的量,混合物总量为A+B(例如mol)。
若用xa、xb分别表示两组分的特性数量(例如分子量),x表示混合物的特性数量(例如平均分子量)则有:
十字交叉法是二元混合物(或组成)计算中的一种特殊方法,它由二元一次方程计算演变而成。若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用十字交叉法计算。
使用十字交叉法的关键是必须符合二元一次方程关系。它多用于哪些计算?
明确运用十字交叉法计算的条件是能列出二元一次方程的,特别要注意避免不明化学涵义而滥用。
十字交叉法多用于:
①有关两种同位素原子个数比的计算。
②有关混合物组成及平均式量的计算。
③有关混合烃组成的求算。(高二内容)
④有关某组分质量分数或溶液稀释的计算等。
此题可列二元一次方程求解,但运用十字交叉法快捷:
八、讨论法
讨论法是一种发现思维的方法。解计算题时,若题设条件充分,则可直接计算求解;若题设条件不充分,则需采用讨论的方法,计算加推理,将题解出。
聆听并总结以下进行化学计算的基本步骤:
(1)认真审题,挖掘题示信息。(2)灵活组合,运用基础知识。
(3)充分思维,形成解题思路。(4)选择方法,正确将题解出。
【小结】以上逐一介绍了一些主要的化学计算的技能技巧。解题没有一成不变的方法模式。但从解决化学问题的基本步骤看,考生应建立一定的基本思维模式。“题示信息十基础知识十逻辑思维”就是这样一种思维模式,它还反映了解题的基本能力要求,所以有人称之为解题的“能力公式”。希望同学们建立解题的基本思维模式,深化基础,活化思维,优化素质,跳起来摘取智慧的果实。
徐老师:13160130701
南环路63号名思教育(曼巴特往南110米)